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Abstract
We consider the class of crossed products of Noetherian domains with universal
enveloping algebras of Lie algebras. For algebras from this class we give a
sufficient condition for the existence of projective non-free modules. This
class includes Weyl algebras and universal envelopings of Lie algebras, for
which this question, known as the non-commutative Serre’s problem, has been
extensively studied previously. It turns out that the method of lifting of non-
trivial stably free modules from simple Ore extensions can be applied to crossed
products after an appropriate choice of filtration. The motivating examples of
crossed products are provided by the class of relativistic internal time algebras,
originating in non-equilibrium physics.

PACS numbers: 02.10.Hh, 02.20.Sw, 03.
Mathematics Subject Classification: 16D40, 19A49, 16S30, 16S36, 16W25,
16W50

1. Introduction

In [21], J-P Serre posed the question of whether any finitely generated projective module over
the ring of commutative polynomials k[x1, . . . , xn] over a field k is free. It was stated there,
in geometrical language: whether any locally trivial vector bundle over an affine space An

k is a
trivial bundle. After almost 20 years of attempts, Suslin [24] and Quillen [20] independently
(and using different methods) obtained an affirmative answer to Serre’s question (see also [12]
for a detailed study of the techniques involved).

Later on, this question was investigated for various classes of non-commutative rings,
including those arising in physics, for example, relativistic internal time (RIT) algebras. A
report on this work can also be found in Lam’s book [12] (chapter VII.8). To describe briefly
what has been done let us recall some definitions.

A finitely generated left A-module M is called stably free if M ⊕ An = Am for some
nonnegative integers n and m; clearly, it is then projective. A module, which is stably free but
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not free, will be called non-trivial stably free. We will need the rank of the stably free module,
M, which is defined as rkM = m − n. This definition obviously only makes sense if A is an
invariant basis number (IBN) ring; for example, we may consider Noetherian rings. We will
suppose throughout the paper that all rings are IBN.

The situation in the non-commutative case turned out to be more involved: there were
constructed counterexamples, i.e. stably free non-free modules in several classes of non-
commutative algebras. By saying that there exists a counterexample in a certain class of
algebras, we mean that any algebra from this class allows a finitely generated projective but
non-free module.

For example, stably free non-free ideals were constructed in any Weyl algebra, An, by
Webber [25]. Another counterexample was constructed by Ojanguren and Sridharan [19]
in rings of polynomials on two variables over a division ring (which is not a field). In
group algebras, non-free projective modules were constructed by Dunwoody and Berridge
[9] for torsion free groups and by Artamonov [7] for solvable groups. Examples of this
type in enveloping algebras of non-Abelian finite-dimensional Lie algebras were provided by
Artamonov and by Stafford; in [22], a unified way for producing non-trivial stably free right
ideals was given, which virtually covers above cases.

In this paper, we consider the class of crossed products of Noetherian domains with a
universal enveloping algebra of a Lie algebra, which subsumes most of the classes mentioned
above, and provide a sufficient condition for the existence of stably free non-free modules in
this wider class. More precisely, we show in theorem 6.2 that stably free non-free modules
can be lifted from any subalgebra of the crossed product A�UG which is a simple differential
Ore extension A[g, δ], g ∈ G, δ ∈ DerA (δ = δḡ is a derivation, involved in the given crossed
product, associated with the element g ∈ G).

A useful tool is provided by theorem 5.7: if A is a domain, endowed with a filtration by a
well-ordered semigroup, such that A0 is a faithfully flat A-module, then any non-trivial stably
free ideal in A0 could be lifted to a non-trivial stably free ideal in A. A graded version of this
fact (theorem 5.3) can be proved for a graded domain A graded by an order-like semigroup.
This is a wider class of semigroups, which, however, captures most of the essential properties
of well-ordered semigroups.

Let us emphasize that all examples of non-trivial stably free modules mentioned above,
and just about all known examples in the non-commutative case, are modules of rank one.
Over commutative rings, there are examples of higher rank and these are typical. An example
of a module of minimal rank (over commutative rings) is a module of rank two over the ring,
R[x, y, z]/x2 + y2 + z2 = 1. The way to ensure that the right unimodular row (x, y, z) gives
rise to the non-trivial stably free module has a geometrical flavour (using the theorem of the
‘hedgehog brushing’ on a 2-sphere) and does not explain much in the line of techniques we
study here.

For the class of Weyl algebras An(k) it was proved by Stafford [23] that all stably free
modules of rank two and bigger are free. In the proof, of course, the simplicity of An(k)

plays a crucial role. This result was generalized to some crossed products of simple rings with
supersolvable groups by Jaikin-Zapirain in [11]. Another case where the positive result holds
can be found in [6].

The examples of crossed products with the universal enveloping algebra we consider are
provided by the class of RIT algebras, which we have been studying in [1, 2] and recall in
section 8. This class originated in non-equilibrium physics [3, 5] and we consider it here in
the general setting of crossed products.
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2. Choice of subalgebras

We start with the definition of a crossed product with a universal enveloping algebra. By k we
denote any field.

Definition 2.1. Let A be a (non-commutative) k-algebra, and G a Lie algebra with a basis
{gi |i ∈ I } over k. Then a k-algebra B containing A is called a crossed product provided there
is an embedding G ↪→ B : g �→ ḡ of linear spaces, which satisfies:

(1) ḡr − rḡ ∈ A for any g ∈ G, r ∈ A and ḡr − rḡ = δg(r) is a derivation on A.
(2) ḡh̄ − h̄ḡ = [g, h] mod A for all g, h ∈ G.
(3) B is a (left) free A-module with the commutative monomials ḡ

j1
1 . . . ḡ

jm
m on {gi |i ∈ I }

as a basis.

The latter condition (3) is called a PBW property over A.
We denote the crossed product algebra B by A � UG.
It is known from [22] (see also [13]) that non-trivial stably free ideals do exist in simple

differential Ore extensions of Noetherian domains, which satisfy some additional condition.
In this section, we suggest how to choose appropriate subalgebras in a crossed product,

A � UG, in such a way that their non-trivial stably free modules can be lifted to non-trivial
stably free modules over the whole crossed product. Namely, we take subalgebras isomorphic
to a simple Ore extension of the initial algebra A; thus the idea is to use subalgebras in the
‘intersection’ of the crossed product components.

We prove several properties of these subalgebras in order to prepare a tool which allows
us to lift non-trivial stably free modules from these subalgebras to the whole crossed product.

Directly from the definitions, it can be seen that A � UG, where G = {g} is a one-
dimensional Lie algebra, is isomorphic to the simple differential Ore extension A[x, δ], where
δ = δg is the derivation related to g, which was defined above as δg(r) = gr̄ − r̄g, for r ∈ A.

Using the defining relations (1) and (2) in the crossed product, one can easily see that
A � UG1, where G1 = {g} is a Lie algebra generated by any single element g ∈ G, is a
subalgebra in A � UG. Indeed, the free basis of the A-module A � UG1, according to (3)
consists of elements ḡi , i = 0 � i < ∞. Any product of two elements of the shape
aḡi, a ∈ A, g ∈ G is a linear combination of elements of the same shape after applying (1).

We denote by A1 the subalgebra A � UG1 in B = A � UG and will consider B as a left
A1-module writing A1B.

3. Faithful flatness of A1B

In this section we will prove two crucial properties of subalgebras of our choice which allow
us to lift non-trivial stably free modules from A1 = A � UG1 = A[g, δ] to the whole crossed
product A � UG.

Starting from here we suppose that A is a Noetherian domain.
The first property we need is the faithfully flatness of B as a left A1 module. We will

prove that in our situation even a stronger condition holds, namely

Lemma 3.1. The left A1-module A1B is free.

Proof. By definition of a crossed product, B = A � UG and A1 = A � UG1 are free left
A-modules with bases V = {gi1

1 . . . gin
n } and W = {gi

1}, respectively.
We prove that A1B is generated by the set � = {gj2

2 . . . g
jn
n } and this set forms a free basis

of this A1-module.
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The first part of the statement, saying that � is a generating system, is obvious. To show
that this is a free basis it is enough to check that if �aibi = 0 in B, for ai ∈ A1, bi ∈ �, then
all ai = 0 (since A1 is a domain). To ensure this, let us first write elements ai ∈ A1 from the
sum �aibi above as follows: ai = ai(g1) = �α

(i)
k gk

1 , with α
(i)
k ∈ A.

Now fulfil the multiplication in the above sum and gather terms near each element vi from
V . We get �βjvj = 0, where βj = �i,k:vj =gk

1vi
α

(i)
k . From this it follows that βi = 0, since V

is a free generating system for AB. Since V is a free basis for the A-module B, given the fixed
numbers i and j , there is only one k such that vj = gk

1vi . Hence the set {βj } just coincides
with the set {α(i)

k }. So, together with all βi = 0 we have all α
(i)
k = 0, and hence ai = 0 for all i.

�

4. Strongly completely prime subalgebras

Before we start the discussion of the second main lemma we should introduce the notion of
strongly completely prime subalgebra, or s.c.p.-subalgebra for short.

Let us consider the following two properties of subalgebra.

Definition 4.1. We say that a subalgebra A1 is completely prime in A if for any two non-zero
elements a and b from A, ab ∈ A1 implies a ∈ A1 or b ∈ A1.

Definition 4.2. We say that a subalgebra A1 is strongly completely prime (s.c.p.) in A if for
any two non-zero elements a and b from A, ab ∈ A1 implies a ∈ A1 and b ∈ A1.

In case A1 is an ideal in A, the first definition just coincides with the definition of a
completely prime ideal, i.e. an ideal such that the quotient is a domain (this explains our
terminology).

The second definition degenerates in case A1 is an ideal. Indeed, suppose A1�A,A1 �= {0}
and A\A1 �= ∅. Then take an element b ∈ A\A1, since A1 is a (right) ideal, for an arbitrary
non-zero element a ∈ A1 we have ab ∈ A1, and the property from the definition 2 does not
hold. If A1 = ∅, then formally the property of being s.c.p. always holds in a domain.

So, the property of being s.c.p. is clearly a feature of subalgebras and should be considered
only in this case (rather then for ideals).

Let us discuss now the notion of type of an element in the crossed product.
First, we associate with any product (monomial) w = agi1 . . . gin , ik ∈ I, a ∈ A in the

crossed product B = A ∗ U(G) its type on variables gi1 . . . gin . By definition, the type t (w)

of the element w is a tuple of nonnegative integers (j1, . . . , jr ), where jk is the number of
variables gk in the monomial w for any k ∈ I . (In case jl = 0 for all l > r , we just omit zero
terms in the sequence j1, . . . , jr , . . . starting from jr+1 to get t (w)). One can also consider the
type of a monomial on any subset of variables {gik , ik ∈ I ′ ⊂ I }.

Let us fix an order on monomials w = agi1 . . . gin ∈ B using the degree lexicographical
ordering on commutative words t (w). Namely, we say that w > w′ for w = agi1 . . . gin

and w′ = a′gi ′1 . . . gi ′n if t (w)>dl t (w
′). The latter means that if t (w) = (j1, . . . , jr ) and

t (w′) = (j ′
1, . . . , j

′
s), then either r > s or r = s and jt > j ′

t for some t, such that jl = j ′
l for

all l < t .
We can define a normal form (with respect to gi, i ∈ I ) of an element in B = A ∗ U(G).

We say that an element f = ∑
aigi1 . . . gin is in the normal form if i1 � i2 � · · · � in, ai ∈ A,

that is, all monomials have the form g
j1
1 . . . g

jr
r . It is clear from the relations in the definition

of crossed product that any element from B can be presented in a normal form, since these
relations allow the commutation of r ∈ A with g ∈ G and elements from G between each
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other. In both cases, we might get new terms, which have a lower degree in gi, i ∈ I . Since
there is no infinite chain of words in gi of strictly increasing degree, in certain step we will
get an element equal to w in a normal form. This element we will call a normal form of
w ∈ B = A ∗ U(G) and denote it by N (w). Property (3) in the definition of the crossed
product (PBW property) ensures that the normal form of an element in B is unique.

This allows us to introduce the notion of the type of an element b ∈ B.

Definition 4.3. By the type of an arbitrary element b ∈ B, we call the type of the highest
monomial in the normal form of b.

Having in hands the notion of the type of an element in B = A � UG we actually have a
natural filtration on B. Namely, B = ∪ī∈�n

Bī , where �n is a semigroup of tuples (i1, . . . , in)

with the componentwise operation, and Bī is a linear span over k of elements of the type
(i1, . . . , in), in particular, B0 = A.

The existence of such a filtration forces us to develop a general machinery for the graded
and filtered case and then apply it to the situation of crossed products, using however a filtration
different from that above.

5. Semigroup graded and filtered case

For this section, we break our agreement that A is a domain, in some statements here we will
ask only for A being a graded domain (that is, there are no zero divisors among homogeneous
elements with respect to a given grading).

The main theorem in the graded setting will have the form.

Theorem 5.1. Let A = ⊕
j∈Z+

Aj be a Z+-graded domain, where A is a flat A0-module. Then
any stably free non-free module over A0 can be lifted to A.

This theorem can be further generalized in a sense that one can consider gradings more
general than Z+-gradings. We shall prove a theorem in that bigger generality, so theorem 5.1
will follow from theorem 5.3.

Definition 5.2. We call a semigroup (G, +) ordered-like if it has no invertible elements except
0 and for any two finite subsets S1, S2 of G such that S = S1 + S2 �= {0}, there exists c ∈ S

with

ν(c) = |{(a, b) : a ∈ S1, b ∈ S2, a + b = c}| = 1.

Most common examples of semigroups with such a property are well-ordered semigroups,
allowing for a linear order compatible with an operation: a < b �⇒ a + c < b + c. In this
case, the sum of maximal elements of S1 and S2 will serve as an element, c ∈ S, with
unique presentation. But there are other examples where this property does not come from
well-ordering.

Theorem 5.3. Let A = ⊕
σ∈G Aσ be a domain graded by an ordered-like semigroup G, where

A is faithfully flat as a left A0-module. Then any stably free non-free right ideal in A0 can be
lifted to A.

The proof is based on the following lemmas.

Lemma 5.4. Let A = ⊕
σ∈G Aσ be a graded domain, with G being an ordered-like semigroup.

Then A0 is a completely prime subalgebra of A.

5
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Proof. To prove that A0 is completely prime it is enough to ensure that, for any two elements
a, b ∈ A, from a, b /∈ A0 it follows that ab /∈ A0. For any element a of A let us denote by
S(a) the subset S(a) = {σ ∈ G : aσ �= 0} of the semigroup G, where a = ∑

σ∈G aσ , aσ ∈ Aσ

is the graded decomposition of a. Clearly a = ∑
σ∈S(a) aσ . Since a, b /∈ A0, the sets S(a)

and S(b) contain non-zero elements. Since G has no non-zero invertible elements, we have
S = S(a)+S(b) �= {0}. Taking into account that G is ordered like, we can find γ ∈ S\{0} such
that ν(γ ) = |{(σ, τ ) : σ ∈ S(a), τ ∈ S(b), σ + τ = γ }| = 1. For the γ th graded component
of ab we will have (ab)γ = aσ bτ . Since aσ �= 0, bτ �= 0 and A is a graded domain, we get
(ab)γ �= 0 for γ �= 0. So, ab /∈ A0. �

The following fact is true for grading by any semigroup, not necessarily with the ordered-
like property.

Lemma 5.5. Let A = ⊕
σ∈G Aσ be a domain graded by an arbitrary Abelian semigroup

G. Then the property of A0 to be completely prime implies the property of A0 to be strongly
completely prime.

Proof. To ensure this we should show that if a, b ∈ A \ {0} and ab ∈ A0 implies a ∈ A0, then
we also have b ∈ A0.

Indeed, let b = ∑
g∈S(b) bg be the graded decomposition of b. Then ab = ∑

g∈S(b) abg .
Here (ab)g = abg ∈ A0Ag ⊆ Ag . On the other hand, ab ∈ A0 and therefore (ab)g = abg = 0
for any g �= 0. Since a �= 0 and A is a graded domain, this implies that bg = 0 for any g �= 0.
That is, b ∈ A0. �

As a corollary of lemmas 5.4 and 5.5 we have that the subalgebra A0 of A is strongly
completely prime. Using this we can proceed with the proof of theorem 5.3 by analogy with
[22].

Proof. (of theorem 5.3) Let K be a non-trivial stably free right ideal in A0. We will show that
the induced ideal, KA = K ⊗A0 A, is also stably free but not free.

Since A is flat as the A0-module, KA = K ⊗A0 A and is also projective as the A-module,
hence stably free. The essential part is to prove that it is not free. We have KA⊕A = A⊕A,
thus we have to show that KA is not cyclic.

Suppose this is not the case, i.e. KA = yA for some 0 �= y ∈ A. (In case y = 0 we will
have a contradiction immediately: A = yA ⊕ A = A ⊕ A and this contradicts the condition
we suppose to hold throughout the paper that all rings have the IBN property).

Since KA = K ⊗A0 A,K is the A0 submodule in KA: K ⊂ KA = yA, and we can take
a nonzero element p ∈ K , which is p = yb for some nonzero b ∈ A. But K is an ideal in A0

and we can use primeness of A0: if p ∈ A0 and p = yb for nonzero y, b ∈ A then it should
imply y ∈ A0.

Now, for any right ideals I � J �r A0, due to faithfully flatness of A we have
IK � JK �r A.

Suppose that the following inclusion of right ideals in A0 holds: K � KA ∩ A0. Then
applying the above observation we get KA � (KA ∩ A0)A. But in fact (KA ∩ A0)A = KA.
Indeed, K ⊂ KA ∩ A0 implies KA ⊂ (KA ∩ A0)A, while KAA ∩ A0A ⊂ KA ∩ A = KA.
This contradiction shows that K = KA ∩ A0.

Now we have K = KA∩A0 = yA∩A0 ⊂ yA0, due to yb ∈ yA belongs to A0 we again
use the fact that A0 is a prime subalgebra, this implies b ∈ A0, in case b �= 0 (obviously in
case b = 0 we also have b ∈ A0). Hence K = yA ∩ A0 = yA0; this contradiction completes
the proof. �

6
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Remark. Let us mention here that for the question of existence of non-trivial stably free
modules it is enough to look only at ideals. In other words, the existence of a non-trivial stably
free (right) module is equivalent to the existence of a non-trivial stably free (right) ideal. This
follows from the observation that if we have a f.g. projective module, which is non-free, then
we also have a projective non-free ideal. Indeed, let P be a f.g. projective R-module and
Rn = P ⊕ Q. For any x ∈ Rn there is a unique decomposition, x = xP + xQ. Consider
a submodule of Rn of the form (0) × · · · × (0) × R × (0) × · · · × (0) = Rj ⊂ Rn, and
define with respect to the above decomposition, submodules Pj = {xP |x ∈ Rj } ⊂ P and
Qj = {xQ|x ∈ Qj } ⊂ Q. Clearly, we have an isomorphism Rj � Pj ⊕ Qj . On the other
hand, from the definition of Rj it is clear that Rj = R. Moreover, we have P = P1 ⊕· · ·⊕Pn

and if P is not free, then one of Pj is not free. But Pj is a submodule of R, i.e. an ideal in R. So
we get a projective ideal which is non-free. This remark shows why it is enough to consider
in the theorem only the behaviour of ideals under the extension of the base ring.

Now we will formulate filtered versions which will be used for the results about crossed
products. Here we restrict ourselves to an arbitrary well-ordered semigroup.

Lemma 5.6. Let A = ∪σ∈�Uσ be a domain, endowed with a filtration by a well-ordered
semigroup �. Then U0 is a s.c.p.-subalgebra of A.

Theorem 5.7. Let A = ∪σ∈�Uσ be a domain, endowed with a filtration by a well-ordered
semigroup �, and A is faithfully flat as a left U0-module. Then any stably free non-free right
ideal in U0 can be lifted to A.

Proofs are analogous to those of lemmas 5.4, 5.5 and theorem 5.3.

6. Back to crossed products

Now we can prove the second lemma we need in the cross product case.

Lemma 6.1. A subalgebra A1 = A � UG1 in B = A � UG, where G1 ⊂ G is a Lie subalgebra
of G generated by one (nonzero) element, is a s.c.p.-subalgebra.

Proof. The essential point in this proof is an appropriate choice of filtration on B. After that we
apply lemma 5.6. Instead of using a natural filtration on B mentioned at the end of section 4,
we suggest the following one. Let

B =
⋃

ī∈�n−1

Bī,

where

Bī = A[g1]Uī,

for

Uī = Sp
〈
g

i2
2 . . . gin

n

∣∣ī = (i2, . . . , in) ∈ �n−1
〉
k,

in particular, B0 = A[g1] is a polynomial algebra over A on one variable g1, where G1

generated by g1 (as we set in section 2).
Note that it is a filtration by the well-ordered semigroup �n−1 and an order on it is degree

lexicographical (the same as we used for ordering of types in section 4, but this time with
respect to n − 1 variables g2, . . . , gn). It is an easy exercise then to check that this is indeed a
filtration. �

7
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Using tools provided by the lemmas 3.1 and 6.1 we can lift non-trivial stably free modules
from subalgebras of the type A1 = A � UG1 = A[g, δ] to the crossed product.

Theorem 6.2. Let B = A � UG. Let K be a non-trivial stably free right ideal in
A1 = A � UG1 = A[g, δ], for some g ∈ G. Then the induced right ideal, K ⊗A1 B, in
B is stably free, but not free.

Proof. We use the same filtration as in the previous lemma and apply theorem 5.7 together
with lemmas 3.1 and 6.1. �

The lifting technique could be applied whenever we have a s.c.p.-subalgebra D in B, such
that DB is a faithfully flat module. Lemmas 3.1 and 6.1 ensure that it is always the case for the
crossed product algebra B = A � UG, if we choose as a subalgebra D a simple Ore extension
A[g, δ] of A.

Now we are in a position to state the result which gives a sufficient condition of existence
of non-trivial stably free modules over crossed products.

Theorem 6.3. Let A be a Noetherian domain, UG—the universal enveloping of Lie algebra
G and B = A � UG a crossed product. If there exists an element g ∈ G such that (r, g + q)

is a unimodular row in a subalgebra A[g, δ] of B, for some r, q ∈ A, r a non-unit, then the
ideal rB ∩ (g + q)B is a non-trivial stably free B-module.

This result shows that non-trivial stably free modules can be lifted from the Ore extensions
of the basic ring A, appearing inside the construction of the crossed product with the universal
enveloping algebra.

Obviously, these modules do not always exist over A�UG. This we can already see from
the example of a simple Ore extension A[g, δ], which is also the simplest case of a crossed
product. Take A to be a commutative local ring with the maximal ideal M. It is known (see
[22]) that a non-trivial Ore extension of A allows stably free non-free ideals if and only if at
least one of the following conditions fails: (1) the Krull dimension of the basic ring is one:
KdimA = 1 or (2). δ(M) ⊆ M. Thus the situation in the wider class of crossed products is
not so definitive as in group algebras of solvable groups or in Weyl algebras where non-trivial
stably free modules always exist, so we only can give conditions when they do.

As an immediate consequence of the above-mentioned fact and theorem 6.2 we get.

Corollary 6.4. A crossed product of a local commutative ring A of KdimA > 1 with UG
for an arbitrary Lie algebra G always allows a stably free non-free module. If KdimA � 1,
then the non-trivial stably free module does exist if G acts in such a way that for some
g ∈ G, g(M) �⊂ M, where M is a maximal ideal in A.

7. Remark on modules of higher ranks

Here we recall some known results, just to emphasize that in the class of crossed products
there are obviously examples of non-trivial stably free modules of higher ranks. They can be
obtained by a slight modification of arguments for the case of 2-sphere (see [13], 11.2.3).

Namely, let us take a (commutative) ring A = R[x1, . . . , xn]/
∑n

i=1 x2
i − 1, for n � 3.

Due to the nature of these relations the column

⎛
⎜⎝

a1

...

an

⎞
⎟⎠, with entries ai—images of variables xi

under the natural morphism ϕ : R[x1, . . . , xn] → A, is unimodular, that is Aa1+· · ·+Aan = A.

8
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Hence it defines a split monomorphism

α : A ↪→ An : a �→

⎛
⎜⎝

a1

...

an

⎞
⎟⎠ · a,

with cokernel P, so P ⊕ A = An. Suppose that P is a free A-module. This is equivalent

to the fact that the column

⎛
⎜⎝

a1

...

an

⎞
⎟⎠ is extendable to an invertible matrix. That is, there

exists M ∈ Gln(R),M = (r̄, c̄1, . . . , c̄n−1), where r̄ , c̄1, . . . , c̄n−1 denote columns of

the matrix and r̄ =

⎛
⎜⎝

a1

...

an

⎞
⎟⎠. We can construct a continuous tangent vector field on a

sphere Sn−1, it is provided by the minors vr = Mi2(r) of matrix M, corresponding to
the second column. Indeed, the scalar product (r, vr) = det(r̄, r̄, c̄2, . . . , c̄n−1) = 0. On
the other hand, this vector field cannot vanish, since there exists a vector c̄1, such that
(c1, vr) = det(r1, c1, c2, . . . , cn−1) = det(M) �= 0.

The existence of a continuous tangent vector field on a real n − 1 sphere which vanishes
nowhere does contradict, for even n, with the well-known theorem on the ‘brushing of a
hedgehog’ (or ‘hairy ball theorem’; see, for example, [14]).

8. The relativistic internal time algebra

In this section, we will show how our general results work for the example of the RIT algebra.
The former was a motivating example to clarify the general construction of cross products.

In the series of papers [10, 17, 18], an internal time operator for a unitary evolution group
Ut, t ∈ R on a separable Hilbert space H was introduced and studied. By definition it is a self-
adjoint operator T with domain D on which the following property holds: U−t T Ut = T + tI .
For the unitary group Ut = eP0t , where P0 is an anti self-adjoint operator, this definition boils
down to the commutation relation [P0, T ] = −I . An internal time operator was introduced
by Misra [15] in the context of unstable Kolmogorov dynamical systems.

The study of the time operator for relativistic fields [3–5, 16] leads naturally to
consideration of the RIT Lie algebra L which is an infinite-dimensional modification of
the Poincaré algebra, generated by the time operator T and the ten generators of the Poincaré
group, describing a relativistic system: P0 is the time evolution generator, Pα are the momenta
generating space translations, Jα are the angular momenta generating rotations in space, and
Nα are the Lorentz boost generators, which are spatio-temporal rotations in Minkowski space.

The internal time gives rise to the velocity observable Vα = PαP −1
0 and to the internal

position observable T Vα . Thus the algebra of relativistic system with internal time does not
satisfy the Einstein equations any more and associated internal spacetime is not the Minkowski
spacetime. Concrete commutation relations for the substitute L of the Poincaré Lie algebra,
with internal time, were computed [3, 5].

9
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We consider [1, 2] associated graded algebra of an enveloping of the Lie algebra L and
say that the associative RIT algebra of type (10, 4) is an algebra given by the following
commutation relations:

R = k〈E〉/
⎧⎨
⎩

[ei, ej ] = 0, ∀(ei, ej ) ∈ (E × E) \ {(Nα, Vβ), (Nα, T )},
[Nα, T ] = VαT ,

[Nα, Vβ ] = −VαVβ,

where E = {P0, Pα, Jα,Nα, T , Vα|α = 1, 2, 3}.
For this particular algebra, the question of existence of stably free non-free modules was

considered in [1]. Using the general result of this paper, the following series of examples
of stably free non-free modules over R could be obtained. Let E1 be the set of variables
E1 = {E \ Nα}, for a fixed α ∈ {1, 2, 3}, and S is a differential Ore extension of k[E1]:
S = k[E1][Nα, δα], where the derivation δα is defined by the commutation relations. Then
applying the technique developed above we can obtain that the induced ideal K ⊗S R for
K = (Vα + 1)S ∩ NαS is a stably free non-free right ideal in R.

Remark on non-gradable modules. As it is noted in [8], the class of associative RIT
algebras consists of Auslander regular algebras. From this it follows that non-trivial stably
free modules, we construct here, are also examples of non-gradable modules.
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